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An algorithm has been formulated for studying the diffusion-controlled reactions in amorphous polymers. 
A method has been proposed based on molecular mobility and leading to migration of radical centres, 
their approach and decay. In a volume of dimensions 70 x 100 x 123 A, using boundary periodic conditions, 
an amorphous polymer system and free radicals are simulated on a diamond lattice by the Monte Carlo 
method. Owing to crank, kink and crankshaft motions, some of them approach one another and decay. 
A change in the concentration of free radicals with time and temperature has been observed by the method 
described. 
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INTRODUCTION 

Radical processes in solid polymers have recently been 
thoroughly examined experimentally. Either a decay of 
the whole set of radicals from the overall spectra was 
studied or decay characteristics of the individual types 
of radicals were done separately. Some peculiarities in 
the behaviour of radicals in solid polymers were observed 
in both cases. One of them is their relatively long lifetime, 
which is due to the fact that the reactions are diffusion- 
controlled. The diffusion coefficient in the solid phase is 
generally low, but depends on temperature, and the decay 
curves of free radicals are therefore functions of tempera- 
ture. The radicals are stable at temperatures well below 
Tg (in poly(methyl methacrylate) (PMMA) and poly- 
styrene (PS), for example, radicals formed by v-radiation 
are stable even at room temperature1). Under gradual 
heating of the sample, the concentration of radicals 
decreases and all radicals usually decay at Tg. This trend 
varies with a change of conditions leading to a change 
in T~ of the polymer (external pressure 2, modification of 
the original polymer structure, copolymerization 3, cross- 
linking, etc.). However, these facts indicate unambiguously 
that there is connection between the stability of free 
radicals and molecular mobility in solid polymers. In 
addition to a purely kinetic approach to radical processes 
developed mainly by Dole 4, attention has also been 
directed towards aspects of radical decay taking account 
of their diffusion. 

The classical papers of Smoluchowski5 dealing with the 
problems of diffusion-controlled reactions were later 
followed by studies of simpler systems 6 and then of 
polymers 7-1°. Although remarkable results were achieved 
mainly in the area of understanding many experimental 
results a'9, it always happened after simplifications that 
usually do not allow solutions of concrete polymeric 
systems and provide more qualitative insight into experi- 
mentally obtained results. 

In this paper we intend to study the problems of the 
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decay of radicals from a different point of view. Instead 
of the analytical formulation of the problem of diffusion 
of active particles in a polymeric system, radical decay 
will be examined by the Monte Carlo method, The 
rotational isomeric-state (RIS) model will be used tl. 
Various types of elementary motions of the various 
segments of the polymer chain will take place on a 
diamond lattice as a function of temperature. During 
these motions, transport of centres, where an unpaired 
electron is localized, is observed, which enables transfer 
or decay of radicals according to the character of the 
environment of a radical. 

THEORETICAL BACKGROUND 

Rotational isomeric-state model 
The use of the RIS model is popular mainly in 

connection with the modelling of polymers on a tetra- 
hedral lattice. One idea of the procedure, namely that 
the conformation of a macromolecule goes through a 
finite number of possible minima on the potential energy 
curve for rotation around a bond, is applied in the Monte 
Carlo process of chain building a°-14. The probability of 
occurrence of the conformation, P(q~), defined for a set 
of angles {~bi}, is given by the product of probabilities 
P(cPi-1, ~b~}. Here p(~b i_ 1, ~bi) is the probability that the 
conformation of the bond i (i ~ 2) is tk~ at the given q~i_ 1 
for the preceding bond. Thus: 

P(qb)=p((b2)p(cP2, qb3)'" "P(q~s-2, ~bs- 1) (1) 

In the RIS model, three values are usually assigned to 
the angle ~b, and the corresponding bond conformations 
are denoted as t (q~--0°), 9 + (~b=120 °) and 9- 
(q~=- 120 °) with respect to the conformations of the 
preceding bonds. N is the number of bonds in the chain; 
P(q~2) is the probability that the second bond will be 
in the conformation tk2. The conditional probability 
p(tk~- 1, ~b~) for the rotational state of bond i represented 
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by one of the values of the angle 4h will be determined 
by the statistical weight matrix U~ introduced by Flory~ 1: 

(t) (o +) (g-) 
(t) ( 1 a a ) (2) 

U i=(g  +) 1 a a03 

(O-) 1 a03 a i 

where u(~a i_ 1, q~i) = exp[ - E(dp i_ 1, (ai) /RT] and E(~b i_ 1, ~b..) 
represents the relative energy of the nearest-neighbour 
interactions. Symbols for statistical weights corresponding 
to particular combinations of the sequences of bonds i 
and i - 1  are evident from (2). According to Flory 
(for alkane chains) a = e x p ( -  0.5 kcal tool- X/R T) ,  03 = 
e x p ( -  2 kcal mol-  ~ / R T ) .  The method of determination 
of P(4h-1, ~bi) so that the chain conformation would 
correspond to condition (1) has been reported elsewhere 1 5. 
(Detailed discussion of the problem of the determination 
of the p values is given in ref. 28.) We have: 

p(Cpi- 1, rPl)= P(q~2)u(~bi - a, q~i)[ UN-I- lq]~,_ j[UN-iq]o, 

(3) 

where [ ],~, means that the element of the vector in 
brackets is" taken such that it corresponds to the 
rotational state of the respective bond. If q~ is t, 9 +, 9- ,  
the first, second and third elements respectively are taken; 
q is the (column) vector (1, 1, 1) T. 

In building the chains by the Monte Carlo method, 
condition (1) is fulfilled as follows12: 

(i) Elements of the matrix of the conditional prob- 
abilities P for the ith bond will be denoted by Pi,ab; Pi,ab 
is the probability that configuration b corresponds to the 
angle q~i of bond i (2 < i < N -  1) given that bond i -  1 is 
in conformation a. The symbols a, b, c show that the 
angle q~ corresponds to t, 9 + and g - ,  respectively. 

(ii) From the three possible isomers of the ith bond, 
an isomer will be chosen with respect to the bond i - 1  
according to the interval into which a random number 

will fall in terms of the following conditions: 

Pi,aa, Pi,aa -Jr- Pi,ab, 1 

Pl,ba, Pi,ba + Pi,bb, 1 

Pl .... Pi,ca -{- Pi,cb, 1 

(4) 

If the ( i -1 ) th  bond is in the state a, then it is chosen 
according to the first row of (4). If random number 

~< p~ .... qS~ is an angle corresponding to state t. If ¢ < p~,.. 
is compared with P~,a, + Pi,ab, and if ~ <<, p~,., + Pi,ab, ~b~ 

assumes the value corresponding to 9 +, etc. In agreement 
with Flory it ,  configurations 9 + 9 ̀ 7 are refused (03=0). 

(iii) In chain building, we shall consider an excluded 
volume with a sphere of radius 3 A. 

Chain building proceeded on a tetrahedral lattice in 
volumes with edges L 1, L 2 and L 3 with periodic 
boundary conditions. With regard to the problem being 
solved, i.e. free-radical decay, we do not insist on the 
same chain lengths. The beginnings of chains and the 
orientation of the first two chain bonds are selected at 
random by means of random numbers. The development 
of the chain follows from the above procedure, applied 
until a 'cul-de-sac' is reached. Then the chain is built up 
from the other end until it stops in a 'cul-de-sac'. Then 
we start with a new chain. 

Tetrahedral  lattice 
The strategy of building up of the chains and the 

motion of their segments is very simple when using vector 
symbols developed by Wall et a l )  TM. All bond confor- 
mations, the whole chain and its configurational changes 
on a tetrahedral lattice may be described by four vectors 
a, r ,  ~, 6 defined by the components listed in Table I .  
The absolute values of all components are equal to 1 and 
the absolute value of vectors is therefore ~/3. The chain 
is built up as a sum of vectors from Table I, a positive 
vector always being followed by a negative vector and 
vice versa. The negative vector (or its components) is 
denoted by a bar over the symbol (see Table 1). 

A step chosen as described above (in subsection on 
RIS model) is characterized by one of the vectors. Here 
we can formulate several simple rules: 

(i) A vector is never followed by its negative. 
(ii) A chain with all bonds in t rans-conf igura t ion  is 

described as simple alternation of two symbols, e.g. 

(iii) When the number of bonds is even and if all vectors 
appear twice with reverse sign, the chain is closed, e.g. 

(iv) To an arbitrary sequence of vectors, which defines 
the chain, e.g. ~6~. • . ,  the zero vector may be added as 
a sum, e.g. 77, and the resulting position of the chain will 
be the same; that is, ~6~ ends in the same place on the 
lattice as ~7~6y (commutability of vectors in vector sum 
and rule (i) were taken into account). 

Intra-  and intermolecular  interact ions 

The energy of the chain corresponding to these 
interactions is composed of bond rotational energy and 
the energy due to the interaction of non-bonded atoms 
in the molecule and in other molecules. Thus the energy 
E is expressible as: 

N - 1  

E= y ,,,"(4,,)+ Y. Y u(r,,.) (5) 
i = 2  m = t  1 

l > m + 3  

The first summation runs over the bonds of the 
polymer chain, the second through atoms of its own and 
other chains in the system, u~(gbi) is the energy corre- 
sponding to the rotational state of the ith bond and for 
alkanes it has the form: 

5 

u~(~bl) = ~ a,  cos" ~b, (6) 
n = 0  

with 5 ~ .  = o a. = 0 so that the zero of energy is trans. The 
molecule is modelled as a chain of N--1 bonds that 
connect n vertices. Each vertex represents a carbon atom 
and its substituents. Parameters in (6) may be chosen, 
for example, according to Skolnick and Helfand 16 or 
according to Montgomery et al. a7 u(r~m) is the energy of 

Table 1 C o m p o n e n t s  o f  v e c t o r s  in  t e t r a h e d r a l  l a t t i ce  

C o m p o n e n t s  

V e c t o r  x y z 

1 1 1 
fl 1 l- i- 

i- 1 I- 
i- F 1 
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interaction of a pair of atoms I, m situated at a distance 
rtm. The second sum of the RHS of (5) covers all the 
distinct pairs formed by atoms that are separated further 
than third nearest neighbours of the same molecule and 
all atoms belonging to different molecules. 

There are several empirical potentials used for the 
representation of u(r~m) is. We shall use a Lennard-Jones 
potential: 

I-/'r \12--(r° ~6~ (7) 
U(rlm)=4~'*L~tm) \rim/_ ] 

where ro is defined so that u(ro)=0; --e*=u(rlm)min. 
Since, from the form of (7), it follows that the value of 
u(rt,) decreases rapidly with increasing rim, in our 
considerations we shall assume that u(r~m) = 0 for rim > 6,~. 

Generation of free radicals 
Free radicals are prepared experimentally by several 

methods. During mechanical destruction of the sample, 
radicals are formed via skeletal bond rupture. Radicals 
are usually in a thin surface layer of small pieces of 
destruction products and primary radicals are of the end 
type. Another widespread method is radiation, which 
generates radicals over the whole volume and, in addition 
to end radicals, radicals may also be formed on the chain. 
The generation of radicals via a chemical route is a less 
often used method. It is mainly applied in connection 
with the application of high pressure, which stabilizes 
polymer radicals by shifting Tg to higher values and 
allows the use of peroxide radicals for reactions with 
polymers 19. This method forms radicals over the whole 
volume. 

To study radical decay by the Monte Carlo method, 
free radicals are generated in the whole volume with the 
polymer sample prepared (see 'RIS model' above) in 
agreement with the method of preparation of radicals in 
the particular experiment. The system of random numbers 
will be used so that the first will determine the chain and 
the second the atom where the free radical will be located. 
Various restrictions following from the experiment may 
be introduced by additional conditions. Without them, 
the distribution of radicals in the volume should approach 
the experimental distribution observed after long sample 
irradiation. 

Decay of free radicals 
At very low temperatures, the radicals are stable. 

They decay stepwise with increasing temperature 2°. On 
increasing the temperature, the concentration changes 
remarkably in a relatively short time and, if the tempera- 
ture remains constant, the concentration of radicals is 
stabilized. As the temperatures, at which the radicals are 
stable, increase, radical pairs decay at first (their distance 
apart being 10 A). Deviations of chain segments from the 
energy minimum are often sufficient for their decay. Most 
probably, however, it is simple motion with low activation 
energy that contributes to their approach. With increasing 
temperature, motions of larger extent occur, leading to 
migration of the radical centres and their decay. 

Types of molecular motions in solid polymers 
We start from our model, where everything takes place 

on a tetrahedral lattice. This fact reduces the number of 
possible motions in real systems to several types. This, 
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on the one hand, facilitates theoretical procedures but, 
on the other, it means that bonds and bond angles are 
fixed and only discrete types of motions connected with 
rotation around bonds are considered. Two simplifications 
are used, the RIS approach and restriction to a tetrahedral 
lattice. 

If the rotational energy minima are well defined, a 
tangible physical basis exists for adoption of the RIS 
scheme. The potentials affecting torsional rotations ~b 
about single bonds of the chain backbone usually possess 
minima separated by barriers at least several times the 
thermal energy k T21. With judicious choice of rotational 
states, the error involved using the RIS scheme is 
generally within the limits of accuracy of basic information 
on bond rotations, non-bonded interactions, and so 
forth11. 

The question of how further restriction to tetrahedral 
lattice affects the results has been studied in detail zz-24. 
The result is not unambiguous. Fixman 22 proposed an 
effective potential that compensates the error from the 
use of constant inner coordinates; however, the compu- 
tational effort involved in the repeated calculation of the 
metric tensor, which enters the theory, is so large that it 
is questionable 23 whether this is a simplification with 
respect to the use of the model without a lattice. The 
results obtained from ref. 24 show that the tetrahedral 
lattice is an acceptable approximation to the rotational 
states of the carbon backbone if second-neighbour 
interactions are considered. It has to be elucidated 
whether small flexibility in real bonds and bond angles 
has any significance in large-system motions 23. 

We study three types of molecular motions, which are 
real in amorphous polymers: crank, crankshaft and kink. 
All these motions are possible in solid polymer systems 25 
and allow migration and approach of radicals that were 
originally spatially separated. The extent of these motions 
depends, of course, on the polymer and mainly on 
temperature. There are several possibilities for the 
realization of each of them. For instance, in crank 
motion, there may be rotation of two, three, four and 
more chain-end bonds, of course, with activation energy 
that increases with the increasing number of bonds in 
the moving group. Similarly, crankshaft motion may 
be simplest--three-bond (Boyer crankshaft)--or multi- 
bond 26. Kink motion may occur in various surroundings 
and the activation energy will also depend on the 
cohesion energy. Northrup 27 found that the existence of 
a kink on its own or on the neighbouring chain lowers 
the barrier for the formation of another kink. This 
provides a starting point for the choice of the type of 
motion in the Monte Carlo method. The type of motion 
attempted is determined by the choice of random number 
between 0 and Z, where Z is the sum of all probabilities 
of attempting each particular type of motion (all types of 
crank, crankshaft motions, kink formation, migration 
and annihilation). 

To calculate the probability of transition, one has to 
know the barrier of the corresponding motion (Eb). All 
motions occur by rotation around a bond (for crankshaft 
motions about two bonds simultaneously). In addition, 
since there is no motion of an isolated chain, a barrier 
is formed as a result of interactions of the rotating 
segment with the surrounding atoms (AUb). Thus 

Eb = u~ + Aub (8) 

where Ub R is the barrier for rotation around the bond, 
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Aub=u(R*)-u(R), where u(R*) is the value in the 
saddle-point of the hypersurface of the potential energy 
of the system 16, and u(R) is the energy of the system 
in the starting configuration (see equation (5)). 

Mechanism of free-radical decay 
In the volume with amorphous polymer prepared on 

a tetrahedral lattice and with a distribution of free 
radicals, motions occur that lead to transfer of individual 
beads of polymer chains. Since this process results in 
transfer of the free valency in the system, it provides 
simultaneously information on the mechanism of free- 
radical decay. The following cases may in general occur: 

(1) A segment of a chain, which is by random choice 
selected for motion, contains an unpaired electron. The 
realization of its motion is connected with the conditions 
of the surroundings, into which it is placed due to motion: 
(a) In the 3/~ surrounding the new segment position, 
there is no chain--motion takes place. (b) In the 3 A 
surrounding the new segment position, there is part of 
another or the same chain with an unpaired electron-- 
motion takes place, and radicals decay. In the first 
approximation, we shall assume that they will decay with 
probability p = 1. In general, we have to consider also a 
barrier to the bimolecular reaction formulated in this 
way. (c) In the 4 A surrounding the new position of the 
chain, there is part of another or of the same chain 
without an unpaired electron--transfer may occur. In 
the first approximation, we shall assume that the transfer 
will take place with probability p = 0.5. This process has 
in general a non-zero value of the barrier and has to be 
taken into account in this problem. 

(2) The moving chain segment does not contain any 
unpaired electron. Three situations exist in this case 
according to the surroundings of the new position of 
the segment: (a) In the 3 A surroundings, there is no 
chain--motion takes place. (b) In the 3 A surroundings, 
there is part of the same or of another chain without an 
unpaired electron--motion does not take place. (c) In 
the 4 A surroundings, there is part of the same or another 
chain with an unpaired electron--the same as the case 
l(c). 

From this analysis it follows that only one type (1 (b)) 
of the six possible types leads to the decay of radicals. 
Other types contribute either to electron transfer (l(c), 
2(c)) or to motion of the beads of chains, which is only 
significant from the point of view of the increase in the 
probability that the situation l(b) will arise. 

Model calculation. We give a simple example as an 
application of the model proposed. The preparation of 
amorphous polymer was carried out according to the 
programme mentioned. In the building up of the chains, 
ignoring the effects of 9++-9~- sequences, conditional 
probabilities Pi,,b were determined on the basis of the 
scheme described in ref. 28 for the simplified case of the 
reduction of calculation to the maximum eigenvalue of 
the matrix U. Using the values ~r =0.43 and o9=0, the 
matrix P has the form: 

• r° 9 Y/  
P=|0.74 0.25 

\0.74 0 0.25/ 

(9) 

In chain building, we start from the conditional prob- 

abilities, instead of a priori ones, since at the decision 
about the conformation of the ith bond, we start from 
the known conformation of the preceding one (see 'RIS 
model' above). In the volume, 80 chains (with length of 
100 beads) and 1190 free radicals were generated. 

Crank and three-bond crankshaft motions were applied 
at the temperatures 200, 250 and 300K, respectively. 
Barriers for individual motions consist of two contribu- 
tions: (i) rotation around a bond for isolated chains 
(in crankshaft motion, double values (for t ~ g  ÷, 
22.6kJmol-1)); (ii) cohesion energy corresponding 
to the particular rotating segment (to CH 2 group, 
4.4 kJ mol-1)29. In crank motions, if the chain ends with 
a methyl group, barriers for motion around the second 
or third bonds are given in Table 2. 

In the terms of the subsection on 'Types of molecular 
motions', individual motions (attempted motions) have 
been chosen randomly. The procedure is similar to that 
in 'RIS model'. The respective probabilities for scheme 
(4) were determined from the barriers for individual 
motions. To prevent needless tests (not every sequence 
in the chain is suitable for performing a particular 
motion), we set in order the sequences formed suitable 
for this purpose into vectors and the selection was only 
done within these sequences. 

If we denote by w~ ° the weight proportional to the 
probability of attempting motion of type l (l= 1, three- 
bond crankshaft; l = 2, two-bond crank; l = 3, three-bond 
crank) of the ith component of the appropriate vector, 
then we can define: 

nl n2 n3 
Z = ~ wll)-[  - ~ wl 2) -[-- ~ wl 3) (I0) 

i = l  i=1 i=1 

where wl t) = exp( - Eli/R T), El is the barrier to appropriate 
motion (see e.g. Table 2), and nl (l= l, 2, 3) gives the 
number of components of the lth vector. Probabilities 
for scheme (4) can then be calculated from: 

ql = wl°/Z (1 l) 

Sequences for individual motions in the volume pre- 
pared with amorphous polymer were selected in this way 
for three temperatures, and the decay of free radicals was 
examined as a function of the number of attempted 
motions. The result is seen in Figure 1. The curve shows 
the change in radical concentration with the number of 
attempts. The radicals decay at first more rapidly; later, 
as the number of attempts increases, their concentration 
varies slightly. As the temperature increases, the concen- 
tration again rapidly decreases. 

This model calculation involves remarkable simpli- 
fications. Despite these, it is seen that such a simulation 
of the changes in radical concentration shows a similar 
course of the radical decay (stepwise) as has been 
observed in experiments 2°. A more precise study requires 
inclusion of further possible motions (see 'Type of 

Table 2 Barriers for crank motion around the second and third bonds 

Einte r (kJmol 1) Etotal (kJmol-1)  

Type Eintr a Two Three Two Three 
of motion (kJ mol-  1 ) bonds bonds bonds bonds 

t - * g  +- 11.3 29.3 38.1 
g+ ~ t  8.8 18 26.8 26.8 35.6 
9-+ --*g~ 17.2 35.2 44.0 
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Figure 1 Dependence of concentration of free radicals C/Co on the 
number of attempted motions na 

molecular motions') and employment of more realistic 
entry data. This will be the subject of our future study. 
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